· Joseph · AI & Machine Learning  · 3 min read

[Day 27] Google AutoML Table - 2

今天要來串接AutoML Table的API了,在串接之前一樣要先把Model deploy。 deployed

大家可以先拿昨天的資料在UI介面上online predict一下。

記得昨天的UI介面嗎?最下面有個REST API點下去就會把上方feature column的值變成json,並給你一個URL讓你呼叫。 json request

不過我這邊CURL的方式一直會出現403,看來不是用我的service account去呼叫,而是使用我的google user去呼叫,所以一直驗證失敗。 CURL

這讓我想到Day16我用了REST API呼叫Translation API,就照本宣科來一次AutoML Table。先按照JSON格式來定義struct,他需要Payload裡面有個RowRow內有Values & ColumnSpecIds

type Body struct {
  Payload Payload `json:"payload"`
}
type Payload struct {
  Row Row `json:"row"`
}
type Row struct {
  Values        []string `json:"values"`
  ColumnSpecIds []string `json:"columnSpecIds"`
}

實際的格式可以參考這裡:https://cloud.google.com/automl-tables/docs/reference/rest/v1beta1/projects.locations.models/predict (你也可以看到其實Values, ColumnSpecIds是deprecated的狀態,可以用cells代替。

接下來看看function:

func OnlinePredict() error {
  token, _ := auth.ServiceAccount("./authentication.json", "https://www.googleapis.com/auth/cloud-platform")

  header := req.Header{
    "Accept":        "application/json",
    "Content-Type":  "application/json; charset=utf-8",
    "Authorization": "Bearer " + token.AccessToken,
  }

  body := Body{
    Payload: Payload{
      Row: Row{
        Values: []string{
          "39", "admin.", "married", "secondary", "no", "70", "yes", "no", "cellular", "31", "jul", "13", "11", "-1", "0", "unknown",
        },
        ColumnSpecIds: []string{
          "461385865340387328", "5073071883767775232", "1614307369947234304", "2767228874554081280", "6225993388374622208", "7378914892981469184",
"3920150379160928256", "5649532636071198720", "8531836397588316160", "1037846617643810816", "3343689626857504768", "7955375645284892672", "2190768122250657792",
"9108297149891739648", "6802454140678045696", "4496611131464351744",
        },
      },
    },
  }
  json_string, _ := json.Marshal(body)

  param := req.BodyJSON(json_string)
  // only url is required, others are optional.
  // params {name} = "projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_NAME"
  r, err := req.Post(
    fmt.Sprintf("https://automl.googleapis.com/v1beta1/projects/%s/locations/us-central1/models/%s:predict", os.Getenv("PROJECT_NUMBER"), os.Getenv("MODEL_NAME")),
    header,
    param,
  )
  if err != nil {
    log.Fatal(err)
  }
  log.Printf("%+v", r) // print info (try it, you may surprise)

  return nil
}

這邊除了建立body json以外,要注意的就是Predict API裡的{name}其實很長,裡面包含PROJECT_NUMBERMODEL_NAME,應該長這樣子projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_NAME

然後我們就來看看結果: output 預測結果是99.83% Deposit=1 (存款不會透過銀行), 0.16% Deposit=2 (存款會透過銀行),跟在UI結果直接按predict差不多。

寫到最後才發現原來其實有Go API可以呼叫,可是要去翻翻Github: https://github.com/googleapis/google-cloud-go/tree/master/automl/apiv1beta1

OK,今天就寫到這邊,謝謝大家的觀看。

今天的code可以看Github:https://github.com/josephMG/ithelp-2019/tree/Day-27

Back to Blog

Related Posts

View All Posts »

[Day 26] Google AutoML Table - 1

因為篇幅關係,昨天的Dialogflow沒有寫到最終章,就要先跳來AutoML Table了。 來點簡介再開始 AutoML Table是一種supervised learning,並透過表格資料訓練模型。用表格中的target欄位進行預測,還有一些用來學習的features特徵欄位。而在訓練之前我們該做的是:蒐集、準備資料、訓練、評估、測試、最後是預測。 當然還有更詳細的介紹都在這裡:https://cloud.google.com/automl-tables/docs/beginners-guide?authuser=1

[Day 30] Google AI & ML Products 系列總結

這系列文章出自於一個無窮無盡的bug的解題時間,想不到如何解bug、又想不出要寫什麼主題,參考完大家的方向以後,我發現這類型的文章很少、又很實用,才下定決心透過鐵人賽推廣 Google AI & ML Products。 在這次的挑戰裡,給了自己三個目標: 更熟悉docker 開始玩Golang 入門大部分的Google AI & ML Products 但也因為Google AI & ML Products太多了,所以把它分了很多子系列進行,現在再來回顧一下這次的內容。 前面先來個提醒,如果過程中你們有Deploy model做Online predict的,如果測完一定要記得刪掉,不然你deploy的model就會一直被收費喔。

[Day 29] Google AI Hub - 2

今天要來玩的是AI Hub裡面的Reusing a pipeline component,對Python超不熟的我弄了超久。 這邊會需要run起tensorflow的docker docker pull tensorflow/tensorflow:latest-py3-jupyter docker run -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888 --name jupyter tensorflow/tensorflow:latest-py3-jupyter

[Day 28] Google AI Hub - 1

話說照第一天的規劃,今天本來要寫Recommendation AI,不過我測了很久始終無法使用Recommendation AI、無法Enable它,所以只好就此作罷。 AI Hub 今天找其他的玩具來玩,翻到了AI Hub,Hub會讓人直接連想到集線器,AI Hub就是把很多AI、ML集中在一起的平台,你可以在上面使用大家的AI model,也可以分享自己的AI上去給大家用。 我今天會來介紹其中幾個內容:service、notebook、tensorflow module,入門一下AI Hub。