· Joseph · Today I Learn  · 3 min read

[TIL] New service sharing: Hex.tech

Podcast source: Hex: Data Project Sharing with Caitlin Colgrove and Barry McCardel

最近迷上聽podcast,裡面專門介紹新服務跟技術,同時可以練練聽力跟學習新知,既然學了乾脆把它寫成心得分享出來。今天來介紹一個新聽到的服務: Hex,在解決大數據專案資料共享的問題。

Hex screenshot

雖然我不是個資料工程師,但曾經使用過Python Jupyter Notebook,而且中間又經歷過換電腦,要重跑都得安裝一堆有的沒的,每次用起來都很不方便。但這次聽到這個服務也是讓我滿臉問號,Jupyter不是已經很多人用了?為什麼又有一個類似的服務出來?

這次訪問到的兩個人Caitlin跟Barry是Palantir的同事,Palantir共同創辦人是Paypal的Peter,他們的客戶都是赫赫有名的大公司大企業或政府機關,但Caitlin跟Barry在Palantir裡看到客戶們導入Data-driven時的種種困難,才衍伸出這個Hex產品。當資料越來越多,就出現共享資料的問題;當團隊越來越大,就出現共同討論的問題。更宏觀一點來看,其實Hex是為了解決整個workflow的問題,會不會我在測試的方法別人用過了?會不會我用同樣的方法可以但你用同樣的方法不行?每次溝通都要透過切換軟體?討論結果還得匯出成PDF傳給對方?Hex可以讓data team的workflow又可以解決討論跟共享的問題,這很像真的挺有價值的。

中間訪問到技術面如何解決共享問題時,Caitlin提到了一個Conflict-free replicated data type(CRDT)演算法,還有另一套Operational Transformation(OT),這兩個都是他們在處理real-time功能時的tradeoff。再加上他們優化了Apollo跟GraphQL,最後才達到他們想要的協作體驗。

這篇podcast還提到了很多很多資料科學領域會用到的tools跟一些BI的工具,甚至是新的data pipeline,而這些也是現在資料科學家要一直學習的東西。或許未來pipeline會不一樣,但他們應該也會更快整合並讓大家使用。

Back to Blog

Related Posts

View All Posts »
BMAD-Method intro

BMAD-Method intro

這是自發性的連續寫30篇教學文章,不是很想把文章發在ithelp,來這邊挑戰一下自己寫30天BMAD-Method相關的技術文章,預計會用BMAD-Method做各種不擅長的專案。期間可能會視情況購置需要的AI agent plans,可能是Claude Code, OpenAI, 或Gemini都說不定,看token燃燒速度而定。 第一篇先來介紹介紹BMAD-Method這個 AI Agent Framework吧。 TOC

Use Grafana MCP with Gemini and n8n

Use Grafana MCP with Gemini and n8n

The Model Context Protocol (MCP) is extremely useful. An AI assistant helps you decide when and how to use connected tools, so you only need to configure them. After integrating MCP logging management systems into several of my projects, it has saved me a significant amount of time. In this article, I'm going to integrate Grafana with the Gemini CLI and n8n. I will chat with the Gemini CLI and n8n and have them invoke the Grafana MCP server. structure TOC

Use Figma MCP server with Gemini CLI

Use Figma MCP server with Gemini CLI

In this article, I won't introduce what MCP is. Instead, I will explain how to set up the Figma MCP server and use Gemini as an MCP client to work with Figma. I will also show you how to run a prompt to get a Figma design with Gemini. TOC

Install Gemini CLI

Install Gemini CLI

Introduction Gemini CLI has been one of the most popular AI agents in the first half of 2025. It's similar to Claude Code, bringing its power directly into your terminal. Although other terminal AI agents exist, their pricing plans are quite different. Gemini CLI provides a free tier with 100 requests per day using Gemini 2.5 Pro, and you can unlock Tier 1 by upgrading to a paid plan. Prerequisites I'm going to use npm to install Gemini. My Node.js version is v24.4.1, and my npm version is 11.4.2. Gemini needs Node.js version 20 or higher installed. If you're using macOS, you can also choose Homebrew to install the Gemini CLI. Installation Now, let's install it using npm. After installation, you can run gemini directly in your terminal. npm install -g @google/gemini-cli installation I'm using the Use Gemini API key authentication method, so I need to generate a key from Google AI Studio and set it in .zshrc (or .bashrc) by adding this line: And then you can try Gemini now! Run some examples example Prompt: give me suggestions for the socket functionality of this project? Response: Conclusion: The Gemini installation is very simple. Although I am using Neovim with Avante, Gemini gives me more power to use the terminal. Next, I will explore how to use Gemini with an MCP server and integrate the workflow into my daily tasks.